Cloning and characterization of a vertebrate cellular myosin regulatory light chain complementary DNA.

نویسندگان

  • P J Zavodny
  • M E Petro
  • H K Lonial
  • S H Dailey
  • S K Narula
  • P J Leibowitz
  • C C Kumar
چکیده

We have isolated two series of complementary DNAs (cDNAs) from a chicken gizzard cDNA library encoding two isoforms of phosphorylatable myosin regulatory light chain (RLC). One of the cDNAs encodes a previously isolated smooth muscle myosin RLC (also referred to as LC20-A); the other encodes a protein that shares 92% homology with the LC20-A isoform. The phosphorylatable threonine and serine residues at positions 18 and 19 of the two myosin RLC sequences are conserved. The two cDNAs are 81% homologous at the nucleotide level over the coding region; the 5' and 3' untranslated regions are divergent. Most of the DNA nonhomology in the coding region does not affect the protein sequence, indicating strong evolutionary conservation pressure to maintain the myosin RLC structure. Northern blot analysis using 3' untranslated region probes reveals restrictive tissue specific expression of one myosin RLC isoform (LC20-A) in smooth muscle tissue and not in other tissues examined. In contrast, the novel myosin RLC isoform messenger RNA (mRNA) is uniformly expressed in all smooth and nonmuscle tissues examined and is designated as cellular myosin RLC for this reason. Our results indicate that cellular and smooth muscle myosin RLC isoforms are distinct and are encoded by separate genes. This report describes the cloning of a novel vertebrate cellular myosin RLC mRNA that differs from previously characterized smooth muscle RLC isoform mRNAs in both primary sequence and expression pattern.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cloning and characterization of mammalian myosin regulatory light chain (RLC) cDNA: the RLC gene is expressed in smooth, sarcomeric, and nonmuscle tissues

The 20-kD regulatory light chain (RLC) plays a central role in the regulation of smooth muscle contraction. Little is known about the structure or expression of smooth muscle myosin light chain (MLC) genes. A cDNA library was constructed in the expression vector, lambda gt-11, with mRNA derived from cultured rat aortic smooth muscle cells. Using antibody generated against tracheal smooth muscle...

متن کامل

Cloning and Expression of Human Gamma-Interferon cDNA in E. coli

Prior to the production of human gamma interferon using recombinant DNA technology, it had been producedmainly upon mitogenic induction of lymphocytes in very low amounts, which evidently hamperedits characterization and its medical applications. The recombinant gamma interferons produced in largerquantities in prokaryotic systems retain their biological activities, and can be...

متن کامل

Characterization of the myosin light-chain-2 gene of Drosophila melanogaster.

Recombinant DNA clones encoding the Drosophila melanogaster homolog of the vertebrate myosin light-chain-2 (MLC-2) gene have been isolated. This single-copy gene maps to the chromosomal locus 99E. The nucleotide sequence was determined for a 3.4-kilobase genomic fragment containing the gene and for two MLC-2 cDNA clones generated from late pupal mRNA. Comparison of these sequences shows that th...

متن کامل

Dictyostelium discoideum myosin: isolation and characterization of cDNAs encoding the regulatory light chain.

Phosphorylation of the regulatory light chains (RMLC) of nonmuscle myosin can increase the actin-activated ATPase activity and filament formation. Little is known about these regulatory mechanisms and how the RMLC are involved in ATP hydrolysis. To better characterize the nonmuscle RMLC, we isolated cDNAs encoding the Dictyostelium RMLC. Using an antibody specific for the RMLC, we screened a la...

متن کامل

Regulation of scallop myosin by the regulatory light chain depends on a single glycine residue.

Specific Ca2+ binding and Ca2+ activation of ATPase activity in scallop myosin require a regulatory light chain (RLC) from regulated (molluscan or vertebrate smooth) myosin; hybrids containing vertebrate skeletal RLCs do not bind Ca2+ and their ATPase activity is inhibited. Chimeras between scallop and chicken skeletal RLCs restore Ca2+ sensitivity to RLC-free myosin provided that residues 81-1...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Circulation research

دوره 67 4  شماره 

صفحات  -

تاریخ انتشار 1990